Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2280415

ABSTRACT

Serum neurofilament light chain (sNfL) is an intensely investigated biomarker in multiple sclerosis (MS). The aim of this study was to explore the impact of cladribine (CLAD) on sNfL and the potential of sNfL as a predictor of long-term treatment response. Data were gathered from a prospective, real-world CLAD cohort. We measured sNfL at baseline (BL-sNfL) and 12 months (12Mo-sNfL) after CLAD start by SIMOA. Clinical and radiological assessments determined fulfilment of "no evidence of disease activity" (NEDA-3). We evaluated BL-sNfL, 12M-sNfL and BL/12M sNfL ratio (sNfL-ratio) as predictors for treatment response. We followed 14 patients for a median of 41.5 months (range 24.0-50.0). NEDA-3 was fulfilled by 71%, 57% and 36% for a period of 12, 24 and 36 months, respectively. We observed clinical relapses in four (29%), MRI activity in six (43%) and EDSS progression in five (36%) patients. CLAD significantly reduced sNfL (BL-sNfL: mean 24.7 pg/mL (SD ± 23.8); 12Mo-sNfL: mean 8.8 pg/mL (SD ± 6.2); p = 0.0008). We found no correlation between BL-sNfL, 12Mo-sNfL and ratio-sNfL and the time until loss of NEDA-3, the occurrence of relapses, MRI activity, EDSS progression, treatment switch or sustained NEDA-3. We corroborate that CLAD decreases neuroaxonal damage in MS patients as determined by sNfL. However, sNfL at baseline and at 12 months failed to predict clinical and radiological treatment response in our real-world cohort. Long-term sNfL assessments in larger studies are essential to explore the predictive utility of sNfL in patients treated with immune reconstitution therapies.


Subject(s)
Multiple Sclerosis , Humans , Cladribine , Prospective Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers , Recurrence
2.
Microbes Infect ; 25(4): 105103, 2023 05.
Article in English | MEDLINE | ID: covidwho-2181623

ABSTRACT

B-cell depleting therapies result in diminished humoral immunity following vaccination against COVID-19, but our understanding on the impact on cellular immune responses is limited. Here, we performed a detailed analysis of cellular immunity following mRNA vaccination in patients receiving B-cell depleting therapy using ELISpot assay and flow cytometry. Anti-SARS-CoV-2 spike receptor-binding domain antibody assays were performed to elucidate B-cell responses. To complement our cellular analysis, we performed immunophenotyping for T- and B-cell subsets. We show that SARS-CoV-2 vaccination using mRNA vaccines elicits cellular T-cell responses in patients under B-cell depleting therapy. Some facets of this immune response including TNFα production of CD4+ T-cells and granzyme B production of CD8+ T-cells, however, are distinctly diminished in these patients. Consequently, it appears that the finely coordinated process of T-cell activation with a uniform involvement of CD4+ and CD8+ T-cells as seen in HCs is disturbed in autoimmune patients. In addition, we observed that immune cell composition does impact cellular immunity as well as sustainability of anti-spike antibody titers. Our data suggest disturbed cellular immunity following mRNA vaccination in patients treated with B-cell depleting therapy. Immune cell composition may be an important determinant for vaccination efficacy.


Subject(s)
Autoimmunity , COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Immunity, Cellular , Antibodies, Viral , Vaccination
3.
J Neuroinflammation ; 19(1): 19, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1643162

ABSTRACT

BACKGROUND: Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. OBJECTIVE: To analyze systematically the CSF profile in COVID-19. METHODS: Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers RESULTS: The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72-50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3-240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF L-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2-4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. CONCLUSIONS: The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and 'long COVID'. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.


Subject(s)
COVID-19/cerebrospinal fluid , Adult , Blood-Brain Barrier , COVID-19/complications , Cerebrospinal Fluid Proteins/cerebrospinal fluid , Cytokines/cerebrospinal fluid , Europe , Female , Humans , Immunity, Cellular , Immunoglobulin G/cerebrospinal fluid , Lactic Acid/cerebrospinal fluid , Leukocyte Count , Male , Middle Aged , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Oligoclonal Bands/cerebrospinal fluid , Retrospective Studies , Spinal Puncture , Post-Acute COVID-19 Syndrome
4.
Front Immunol ; 12: 803742, 2021.
Article in English | MEDLINE | ID: covidwho-1581314

ABSTRACT

Immunocompromised patients are considered high-risk and prioritized for vaccination against COVID-19. We aimed to analyze B-cell subsets in these patients to identify potential predictors of humoral vaccination response. Patients (n=120) suffering from hematologic malignancies or other causes of immunodeficiency and healthy controls (n=79) received a full vaccination series with an mRNA vaccine. B-cell subsets were analyzed prior to vaccination. Two independent anti-SARS-CoV-2 immunoassays targeting the receptor-binding domain (RBD) or trimeric S protein (TSP) were performed three to four weeks after the second vaccination. Seroconversion occurred in 100% of healthy controls, in contrast to 67% (RBD) and 82% (TSP) of immunocompromised patients, while only 32% (RBD) and 22% (TSP) achieved antibody levels comparable to those of healthy controls. The number of circulating CD19+IgD+CD27- naïve B cells was strongly associated with antibody levels (ρ=0.761, P<0.001) and the only independent predictor for achieving antibody levels comparable to healthy controls (OR 1.07 per 10-µL increase, 95%CI 1.02-1.12, P=0.009). Receiver operating characteristic analysis identified a cut-off at ≥61 naïve B cells per µl to discriminate between patients with and without an optimal antibody response. Consequently, measuring of naïve B cells in immunocompromised hematologic patients could be useful in predicting their humoral vaccination response.


Subject(s)
B-Lymphocyte Subsets/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL